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Free-Wilson (FW) analysis is common practice in medicinal chemistry and is based on the assumption that
the contributions to activity made by substituents at different substitution positions are additive. We analyze
eight near complete combinatorial libraries assayed on several different biological response(s) (GPCR, ion
channel, kinase and P450 targets) and show that only half-exhibit clear additive behavior, which leads us
to question the concept of additivity that is widely taken for granted in drug discovery. Next, we report a
series of retrospective experiments in which subsets are extracted from the libraries for FW analysis to
determine the minimum attributes (size, distribution of substituents, and activity range) necessary to reach
the same conclusion about additive/nonadditive effects. These attributes can provide guidelines on when it
is appropriate to apply FW analysis as well as for library design, and they also have important implications
for further steps in iterative drug design.

Introduction

Medicinal chemistry is a complex universe in which the
chemical structure space of biochemically active compounds,
ligands or drugs, overlaps with the biological structure space
formed by the target molecules.1 Many attempts have been made
to rationalize and quantify the complexity of medicinal chem-
istry space by considering chemical and biological systems, for
example, by predicting ligand binding affinities; however, such
analyses may lead to unreliable models because they are often
based on flawed assumptions, such as additivity principles in
biochemistry.2 Indeed it has been appreciated for many years
that additivity does not apply in complex systems, e.g.,
protein-ligand complexes.2-4 However, the concept of addi-
tivity is a fundamental premise that is widely taken for granted2

in different approaches in the drug discovery process, including:
fragment-based ligand design, scoring functions and free energy
calculations for ligand binding to proteins, and quantitative
structure-activity relationships (QSARsa).

Fragment-based ligand design is a constructive approach to
inhibitor design5 in which different experimental approaches
such as NMR,6-8 tethering9-13 and X-ray crystallography14-17

are used to identify low-molecular-weight fragments that bind
to a receptor. The fragments are then used as starting points to
construct a lead compound under the assumption that the binding

modes of the individual fragments are only minimally perturbed
upon elaboration.18 There are many cases where additivity in
fragment-based ligand design has been demonstrated. For
example, Stout et al.15 deconstructed a natural substrate into
fragments and used X-ray crystallography to demonstrate
minimal perturbation in the binding of the fragments compared
to the substrate as a whole. Saxty et al.16 also used X-ray
crystallography to iteratively elaborate an initial fragment hit
into a nanomolar inhibitor and subsequently used a Free-Wilson
analysis19 to estimate the binding affinity of individual functional
groups in order to direct further optimization. However, there
are also many counter examples where additivity is not
exhibited. For example, Babaoglu and Shoichet17 found that
none of the fragments resulting from substrate deconstruction
bound in positions corresponding to their placement in the parent
compound. Moreover, there are many examples where binding
affinity only emerges once a critical number of functional groups
are present with the molecular affinity far exceeding the sum
of the component fragments: these include biotin,20 several CDK
inhibitors,21 and stromelysin inhibitors.22 In substrate recogni-
tion, too, distinct functional groups can combine with pro-
nounced nonadditivity.23

Many of the scoring functions that are widely used to
approximate the free energy of binding in protein-ligand
docking also assume additivity, including those based on
empirical and force field methods as found in DOCK,24

CHARMm,25 AutoDock,26 GOLD,27 LUDI,28 FlexX,29 Chem-
Score,30 and GLIDE.31 Force field methods approximate the
binding free energy of a protein-ligand complex by a sum of
van der Waals, electrostatics, and other contributions. The basic
assumption is that different contributions to free energy of
binding can be calculated separately and are additive; however,
protein-ligand recognition is a concerted event and the
thermodynamic quantities cannot be simply summed.2 While
these approaches are valid as prioritization tools in virtual
screening and are useful for predicting experimental binding
modes, none of the scoring functions has been shown to achieve
useful estimates of experimental binding affinities.32
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In the absence of structural information for the receptor,
quantitative predictions of ligand binding affinities can be
obtained using QSAR techniques. However these techniques
are also often based on the assumption of additivity. For
example, Free-Wilson (FW) analysis can be applied to a series
of analogues consisting of a common core structure and variable
substituents, with the aim of deriving quantitative estimations
of the contributions made by each substituent to overall
activity.19 The basic assumptions in FW analysis are that each
substituent makes an additive contribution activity and that the
substituent contributions are independent.19 The FW method is
limited to data sets of structurally similar ligands such as those
explored in lead optimization. When applied in the right context,
the FW approach (or its modified Fujita-Ban version33) can be
very successful and it has been used extensively in medicinal
chemistry, from the early days of QSAR through to the present
day.34-38 Moreover, there has been a resurgence of interest in
FW analysis following the development of combinatorial
chemistry techniques and fragment-based drug design. In

combinatorial chemistry, a FW analysis can be used to predict
the activity of all compounds in a full combinatorial matrix
based on a cross-section of analogues that have already been
synthesized. If a good model is obtained, then it is assumed
that additive effects are present. In cases where activity depends
significantly on the simultaneous presence or absence of two
or more substituents and nonadditive substituent effects are
present, then a FW analysis is not valid and nonlinear techniques
such as artificial neural networks should be used.39

Given the complexity of protein-ligand interactions, and of
medicinal chemistry space in general, the assumption of
additivity should not be taken for granted because it can mislead
future design efforts. Thus it is important to examine the SAR
to determine if additivity is present. Furthermore, establishing
the presence or absence of additive effects early in the lead
optimization process also has clear efficiency implications for
subsequent iterations of the design and test cycle: for data sets
that are shown to be additive, a sequential synthetic approach
can be followed based on the substituent contributions estimated
by a Free-Wilson analysis; whereas for data sets that show
nonadditive behavior, a fully combinatorial approach should be
taken.40,41

Here we carry out a retrospective FW analysis of near-
complete combinatorial libraries, tested over several biological
assays, in order to: first, estimate whether additive or nonadditive
effects are present for different combinations of chemical spaces
and biological assays and, second, determine the minimum
attributes of a data set (size, distribution of properties etc.)
necessary to reach the same conclusion on additivity. The aim
is to establish guidelines on the size and characteristics of
compounds sets necessary to determine additivity in prospective
iterative drug design due to its clear implications in this process.

Method

Free Wilson (FW) analysis is based on simple indicator variables
that relate to different substituents on a common scaffold. Each
molecule is described by a series of indicator variables, one for

Figure 1. FW analysis. X1, X2, Y1, and Y2 etc are possible R group
substituents at two positions of variability on a common scaffold (RX

and RY respectively). Each molecule is represented by an indicator
variable, one for each substituent: a value of 1 indicates that a molecule
has that particular substituent at a particular position; 0 indicates that
it does not.

Table 1. Details of the Various Data Sets Used

data set property
no. of RX

groups
no. of RY

groups
no. of compds

in complete data set
no. of

compds

percentage
coverage

of complete
data set

min property
value

max property
value

range of
property values

4R 1_136 K channel 7 11 77 54 70.1 5.05 7.17 2.12
4R 1_56 Na channel 6 16 96 72 75.0 5.06 7.07 2.01
4R 1_73 class A GPCR 7 17 119 81 68.1 6.04 8.98 2.94

D1 1_62 class A GPCR 14 15 210 178 84.8 5.01 7.86 2.85
D1 1_64 class A GPCR 14 15 210 178 84.8 5.16 8.99 3.83

D2 1_62 class A GPCR 9 12 108 87 80.6 5.30 7.86 2.56
D2 1_64 class A GPCR 9 12 108 87 80.6 5.52 8.99 3.47
D2 58_7 class A GPCR 9 12 108 87 80.6 5.01 7.91 2.9

D3 1_73 class A GPCR 22 5 110 98 89.1 5.46 8.98 3.52
D3 221_5 cellular metabolism 22 5 110 82 74.5 12.00 100.00 88.00

D4 100_152 ion channel 13 7 91 69 75.8 5.03 7.98 2.95

D5 100_193 class A GPCR 7 11 77 54 70.1 5.07 8.79 3.72

D6 76_97 Ser/Thr kinase 19 6 114 96 84.2 6.79 8.90 2.11

D7 221_5 cellular metabolism 12 5 60 42 70.0 0.00 91.5 91.5
D7 339_3 P450 3A4 12 5 60 40 66.7 12.01 85.26 73.25
D7 339_5 P450 2C9 12 5 60 40 66.7 16.81 110.79 93.98
D7 339_6 P450 2D6 12 5 60 40 66.7 11.35 54.23 42.88
D7 339_7 P450 1A2 12 5 60 40 66.7 3.93 102.75 98.82
D7 76_97 Ser/Thr kinase 12 5 60 42 70.0 7.18 8.87 1.69
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each substituent, with a variable having the value of 1 if the
substituent is present in the molecule and 0 if it is absent.
Coefficients for the substituents are derived by applying multiple
linear regression or partial least-squares (PLS) and indicate the
contribution that each substituent makes to the property of interest,
see Figure 1.

We first apply FW analysis to (near) complete combinatorial
libraries in order to classify them as additiVe or nonadditiVe: a
library for which a good model is obtained is classified as additive,
whereas a library for which the FW analysis fails is classified as
nonadditive with the failure to generate a good model being

indicative of interaction effects occurring between the substituents.
For each library identified as additive, we then carry out a series
of retrospective experiments in which compounds are progressively
removed from the library and the FW analysis is applied to the
reduced library in order to determine the minimum characteristics
required to determine additive effects.

Data Sets. A total of 19 data sets of varying sizes was retrieved
from the Johnson & Johnson Pharmaceutical R&D database
comprising eight different sets of compounds (labeled 4R, D1, D2,
D3, D4, D5, D6, and D7) with each compound set tested in from
one to six assays that include different ion channels (pIC50 values),

Table 2. Characteristics of the Test Sets are Summarized over the Five Test Sets for Each Data Set and Include: The Maximum and Minimum Ranges
of the Properties Being Predicted, the Maximum and Minimum SSE for Each R group, the Number of Compounds, and the Percentage of the Complete
Data Set that is Represented by the Test Sets

data set
max property

range
min property

range
max Rx SSE min Rx SSE max Ry SSE min Ry SSE no. of compds

percentage coverage of
complete data set

4R 1_136 2.05 1.48 0.973 0.924 1.000 1.000 11 14
4R 1_56 1.89 1.43 0.949 0.910 1.000 1.000 16 17
4R 1_73 2.91 1.96 0.979 0.864 1.000 1.000 17 14

D1 1_62 2.26 1.52 0.971 0.927 0.984 0.942 29-32 14-15
D1 1_64 3.65 2.59 0.968 0.950 0.974 0.951 30-32 14-15

D2 1_62 2.56 1.77 0.973 0.953 1.000 1.000 12 11
D2 1_64 3.32 2.22 0.973 0.921 1.000 1.000 12 11
D2 58_7 2.74 1.57 0.973 0.953 1.000 1.000 12 11

D3 1_73 3.33 2.42 0.995 0.995 0.991 0.870 23 21
D3 221_5 86.50 63.04 0.991 0.981 0.967 0.910 24-25 22-23

D4 100_152 2.95 1.87 1.000 1.000 0.969 0.870 13 14

D5 100_193 3.72 1.15 0.973 0.949 1.000 1.000 11 14

D6 76_97 2.08 1.75 1.000 0.994 0.969 0.936 19-20 17-18

D7 221_5 91.50 91.50 1.000 1.000 0.943 0.885 12 20
D7 339_3 73.25 73.25 1.000 1.000 0.960 0.885 12 20
D7 339_5 93.98 93.98 1.000 1.000 0.987 0.840 12 20
D7 339_6 42.88 42.88 1.000 1.000 0.987 0.916 12 20
D7 339_7 98.82 98.82 1.000 1.000 0.987 0.916 12 20
D7 76_97 1.68 1.68 1.000 1.000 0.970 0.912 12 20

Table 3. Characteristics of the Training Sets Including: The Number of Training Sets per Test Set, the Maximum and Minimum Ranges of the
Properties Being Predicted, the Maximum and Minimum SSE for each R Group, the Maximum and Minimum Number of Compounds, and the Range of
Training Set Sizes as a Percentage of the Number of Compounds Required for a Complete Data Set

data set
no. of training
sets per test set

max property
range

min property
range

max RX

SSE
min RX

SSE
max RY

SSE
min RY

SSE
min no. of

compds
max no. of

compds
range of training

set sizes as %

4R_1_136 92 2.12 1.37 0.992 0.740 0.996 0.926 15 43 20-56
4R_1_56 102 1.93 1.45 0.991 0.712 0.996 0.929 21 56 22-58
4R_1_73 122 2.94 2.68 0.991 0.790 0.994 0.936 25 64 21-54

D1_1_62 77 2.85 1.74 0.998 0.870 0.997 0.929 30 149 14-71
D1_1_64 77 3.83 2.18 0.997 0.872 0.996 0.933 29 148 14-71

D2_1_62 77 2.56 1.58 0.998 0.898 0.996 0.925 28 78 26-72
D2_1_64 77 3.47 2.22 0.999 0.898 0.997 0.928 28 75 26-69
D2_58_7 97 2.90 1.57 0.998 0.842 0.996 0.927 22 78 26-72

D3_1_73 62 3.52 2.59 0.999 0.921 0.999 0.924 43 75 39-68
D3_221_5 37 88.00 83.50 0.999 0.940 0.997 0.882 45 58 41-53

D4_100_152 202 2.95 1.92 1.000 0.858 0.991 0.874 25 56 28-62

D5_100_193 87 3.72 2.26 0.999 0.725 0.993 0.921 21 43 27-56

D6_76_97 97 2.11 1.69 1.000 0.909 1.000 0.933 35 77 31-68

D7_221_5 47 85.50 83.50 1.000 0.928 0.998 0.866 23 30 38-50
D7_339_3 92 70.79 67.11 0.986 0.928 0.998 0.871 23 28 38-47
D7_339_5 92 83.79 83.79 0.986 0.928 0.996 0.880 23 28 38-47
D7_339_6 92 35.44 35.06 0.986 0.928 0.998 0.885 23 28 38-47
D7_339_7 92 98.21 94.67 0.986 0.928 0.986 0.838 23 28 38-47
D7_76_97 47 1.33 1.33 1.000 0.928 0.996 0.838 23 30 38-50
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class A GPCRs (pIC50 values), Ser/Thr Kinase (pIC50 values),
cytochrome P450 isoforms (percentage of inhibition at 10 µM, as
substrate concentration), and metabolic stability in human liver
microsomes (percentage of parent compound after 15 min incuba-
tion). Taken together, these assays cover a broad biological space.
All data sets contained two positions of variability. For three of
the data sets (4R, D3, and D7) the numbers of compounds tested
in each assay varies. Ideally, the data sets used in the analysis would
be complete arrays with all compounds tested on all properties,
however, no such data sets were available. The data sets were
chosen as being as near complete as possible and vary from
67-89% complete. Table 1 gives summary details of the data sets
and the assays they have been tested against (further details of all
the data sets are provided as Supporting Information). The chemical
space covered by all the compounds in the data sets is represented
in Figure 2.

The eight compound sets reported in Table 1, and represented
in Figure 2, belong to five different chemotypes. Each of these
scaffolds bears two diversity points, Rx and Ry, as shown in Figure
3: (i) Chemotype I describes structures in the 4R (up to 81
compounds) and D3 (up to 98 compounds) data sets,43 (ii)
Chemotype II describes structures in the D1 (up to 178 compounds)
and D2 (up to 87 compounds) data sets,44 (iii) Chemotype III
describes structures in the D4 (69 compounds) data set,45 (iv)
Chemotype IV describes structures reported in the D5 (54 com-

pounds) data set,46 and (v) Chemotype V describes structures in
the D6 (96 compounds) and D7 (up to 42 compounds) data sets.47

Figure 2. The three principal components (t[1], t[2] and t[3]) are
derived from 213 1D and 2D descriptors (including electrotopological
state keys, VSA descriptors and molecular property counts as imple-
mented in Pipeline Pilot42) and cover 60.9% of the chemical space,
defined by the 705 compounds in the data sets reported in Table 1.

Figure 3. Compounds reported in Table 1 belong to these five
scaffolds, and provide a good degree of diversity in chemical space.

Figure 4. Distribution of substituents for the D1 data set. The dark
squares indicate compounds present in the data set, with the white
squares indicating compounds missing from the complete matrix.

Figure 5. (a) Percentage of models with pred-r2 > x. (b) Percentage
of models with q2 > x. The data sets classified as additive according
to pred-r2 are shown in red; those classified as partially additive are in
green, and those classified as nonadditive are in blue.
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Figure 4 shows the distribution of substituents in the D1 data set
(similar plots for all data sets are available as Supporting Informa-
tion).

Design of Training and Test Sets. For each data set, five
different test sets were selected using a genetic algorithm (GA)48

under the constraint that each test set contained at least one
occurrence of each RX and RY substituent; the compounds remaining
after selection of a test set then formed a training pool from which
training sets were selected. Multiple training sets were selected for
each test set with the aim of varying training set attributes (training
set size, range of values of the property to be predicted, and
distribution of substituents in each R group), subject to the constraint
that there was at least one occurrence of each substituent and ideally
at least two occurrences (although the latter was not always
possible).

The distribution of substituents for an R group was measured
using the scaled Shannon entropy (SSE):

SSE) SE
log2 N

(1)

SE)-∑
i

pi log2 pi (2)

pi )
ci

total _ count
(3)

where SE is the Shannon entropy, N is the number of substituents
in the R group, pi is the probability of a substituent being the ith
substituent, ci is the number of occurrences of the ith substituent,

and total_count is the total number of compounds in the training
set. Each set of R group substituents (RX and RY) was treated
independently. If all of the substituents within an R group occur
equifrequently, then the SSE is equal to one; if the training set
contains only one substituent for one of the R groups (that is, all
compounds occur in a single row (or column) of the matrix), then
the SSE for that R group is equal to zero. However, because the
subsets are constrained to contain at least one occurrence of each
substituent, the SSE for an R group cannot be zero: for example,
if there are 10 substituents, then the minimum SSE value that can
be obtained is 0.774; if there are 5 different substituents, then the
minimum SSE value is 0.809.

The characteristics of the test and training sets are summarized
in Tables 2 and 3, respectively.

Classification of the Data Sets. A FW analysis (using the PLS
module in MOE 2005.06) was carried out for each training set-test
set combination and the resulting models were evaluated using r2,
q2 (using leave-one-out (LOO) cross-validation), and predicted r2

(pred-r2). The resulting models generated for each test set were
binned accumulatively according to pred-r2 with bin values
corresponding to: percentage of models with pred-r2 > 0.1,
percentage of models with pred-r2 > 0.2,..., percentage of models
with pred-r2 > 0.9. The results are plotted in Figure 5a averaged
over the five test sets for each data set. Standard deviations are
shown for three of the data sets.

The data sets fall into three distinct bands: those where the
majority of the models have high pred-r2 (region A: > 50% of
models have pred-r2 g 0.6), those where very few of the models
show high pred-r2 (region C: < 20% of models have pred-r2 g
0.4), and the intermediate case (region B: < 50% of models have
pred-r2 g 0.6 and >20% of models have pred-r2 g 0.4). We
conclude that pred-r2 appears to provide a robust statistic for
evaluation of additive effects and models falling in region A were
classified as additive, those in region C as nonadditive, and those
in region B as partially additive.

Table 4 shows the average r2, q2, and pred-r2 values, obtained
for all the models averaged over all training and test set combina-
tions for a given data set, together with the classifications as defined
above. While pred-r2 appears to provide a robust statistic for
evaluation of additive effects, in a prospective study, the aim is to
determine additivity based on the compounds synthesized so far
and the use of a test set is undesirable because it limits the
compounds that are available for training. It would be more useful
to be able to determine additivity using the q2 statistic. Figure 5b
shows the corresponding plot to Figure 5a based on q2 (rather than
pred-r2), with the data sets colored according to the classifications
in Table 4 (the additive data sets in red, the nonadditive data sets
in blue, and the partially additive data sets in green). Unfortunately,
although perhaps not surprisingly, the classification is less distinct
when q2 is considered. Although three of the four nonadditive data
sets show poor q2 values as expected, one of the nonadditive data

Table 4. Average r2, q2, and pred-r2 Values Obtained for Each Data
Seta

data set average r2 average q2 average pred-r2 additivity class

D2 1_62 0.940 0.818 0.801 A
D3 1_73 0.911 0.449 0.794 A
D1 1_64 0.939 0.721 0.79 A
D2 1_64 0.939 0.815 0.772 A
D7 339_7 0.95 0.583 0.748 A
D2 58_7 0.891 0.594 0.742 A
D6 76_97 0.822 0.277 0.740 A
D1 1_62 0.927 0.69 0.722 A
D4 100_152 0.893 0.563 0.72 A
4R 1_73 0.934 0.421 0.716 A
D7 339_5 0.905 0.349 0.534 P
4R 1_136 0.908 0.479 0.518 P
D3 221_5 0.873 0.39 0.502 P
D7 76_97 0.916 0.401 0.500 P
D7 221_5 0.918 0.514 0.484 P
D5 100_193 0.742 0.082 0.191 N
D7 339_3 0.952 0.516 0.172 N
D7 339_6 0.795 0.13 0.155 N
4R 1_56 0.801 0.132 0.151 N

a Classification is based on pred-r2 values where A ) additive; P )
Partially-additive; and N ) non-additive.

Figure 6. Correlation of coefficients in models generated for one test set for the additive data set D1 1_64 (left), the partially additive data set 4R
1_136 (middle), and the nonadditive data set 4R 1_56 (right). The average pairwise correlation coefficient, r2, values are: 0.840 (D1 1_64), 0.725
(4R 1_136), and 0.331 (4R 1_56).
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sets (D7 339_3) has relatively high average q2. Furthermore, one
of the additive data sets (D6 76_97) shows similar behavior to the
nonadditive data sets with respect to its q2 values and two of the
additive data sets (D3 1_73 and 4R 1_73) are intermediate in
average q2 (<0.5). Thus, we conclude that classical q2 using LOO
cross-validation cannot be used to characterize the data sets as
additive or otherwise. It is also evident from Table 4 that internal
fit (r2) does not provide a reliable indicator of additivity because a
high r2 is reported for all data sets.

It is evident from Table 4 that additive effects are dependent on
both the structural space covered by the compounds and the
biological target under consideration. For example, the D7 data set
exhibits additive behavior with respect to P450 1A2 (339_7),
however, nonadditive behavior is observed for P450 3A4 (339_3)
and partially additive behavior is observed when the compounds
are assayed on human liver microsomes (cellular metabolism:
221_5). On the other hand, different chemical spaces (data sets)
exhibit different additivity effects for the same biological target.
For example, while the D6 data set shows additive behavior for
the Ser/Thr kinase (76_97) target, the D7 data set shows partially
additive behavior on the same target. Finally some of the data sets
show additive behavior for all biological responses analyzed, for
example, D2 shows additive behavior for three different GPCR
targets. Thus, the 19 cases represented in Table 4 that cover different
chemical and biological spaces demonstrate the complexity of
protein-ligand interactions, with only half of them showing fully
additive behavior.

Analysis of Coefficients. An analysis of the model coefficients
has been carried out in order to confirm the additivity classifications
made thus far. It is expected that an additive data set will exhibit
a greater degree of stability in the substituent coefficients generated
over different training sets, than a nonadditive data set, i.e., the
variation in the values of the coefficients a1, a2, b1, b2, etc., (see
Figure 1) seen over multiple models will be less for an additive
data set due to the increased reliability of each model relative to
those generated for nonadditive data sets. Substituent stability has
been assessed by carrying out a pairwise comparison of the models
generated for each data set. For each model, the substituent
coefficients are normalized to be in the range 0-1, with the
minimum and maximum coefficient in each model set to 0 and 1,
respectively (normalization is required because the absolute values
can vary between models). The degree of correlation between two
models is then measured by comparing the corresponding coef-
ficients from two models using r2. The pairwise correlation
coefficients are plotted as heat maps in Figure 6 for an additive
(left), partially additive (middle), and nonadditive (right) data set.
In each case, the models are arranged according to increasing size

of the training set. Each square indicates a pairwise comparison of
models, with the color indicating the degree to which the coefficients
are correlated: red indicates a correlation of 1.0 and blue indicates
a correlation of 0.0. In all three cases, there is high correlation
between the coefficients for the largest training sets. This is to be
expected as the larger training sets are more similar: for example,
if there are 70 compounds available and 60 are selected to form

Figure 7. Variation of pred-r2 with property range of the training set
for an additive data set. The property range covered by each test set is
as follows: test set 1: 3.65; test set 2: 2.59; test set 3: 3.32; test set 4:
3.55; test set 5: 3.13.

Figure 8. (a) Pred-r2 vs training set size for the additive data set, D1
1_64. (b) Pred-r2 vs training set size for the nonadditive data set, 4R
1_56.

Figure 9. Percentage of models with pred-r2 > x for models derived
from small training sets (<30% data set) with additive models in red,
partially additive in green, and nonadditive data set in blue.
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training sets, then the maximum number of compounds that can
differ between the two training sets is 10, or 16.6%. For the additive
data set, there is a good correlation between the coefficients
developed for the substituents for all training sets except the smallest
(indicated by a large area of red/orange). For the partially additive
data set, the region of low correlation is extended (i.e., there is
more green in the heat map). The nonadditive data set shows little
correlation between the coefficients, except for the very large
training sets. Similar plots are seen for the different test sets for
each data set and each plot is characteristics of other data sets in
the same additivity classification. These findings support the earlier
classification of the data sets.

Identifying Nonadditive R-Groups. The stability of the sub-
stituents across different models has also been used in an attempt
to identify nonadditive substituents in data sets classified as partially
additive. If such substituents can be identified, their removal from
the test sets should lead to improved prediction performance. The
substituents in a model are first ranked according to the relative
sizes of their coefficients (rankings are used because, as indicated
above, the absolute values of the coefficients can vary widely from
one model to another). The variation in ranking across the models
is then determined and an unstable (nonadditive) substituent is
defined as one whose standard deviation in ranking is greater than
one-fifth of the number of substituents in that R-group, with each

Figure 10. The first five plots show SSE values for the RX (x-axis) and RY (y-axis) groups for training sets extracted from additive data set D1
1_64. Each data point represents one training set and is color coded to denote the pred-r2 value (with red indicating pred-r2 of 1 and blue indicating
a pred-r2 of 0). Each plot represents a different test set. The bottom right plot shows the same data points as the bottom left plot (the SSEs of the
RX and RY groups for the training sets corresponding to test set 5) with the data points now color coded according to the fraction of compounds
in the training set (with the value 1 (red) representing all available compounds used in the training set).
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R-group (RX and RY) considered independently. The partially
additive data set, D7 221_5, is used to illustrate the change in pred-
r2 when unstable substituents (4 out of 12 substituents) are removed
from it. Initially, when all compounds are considered, only 4% of
the models have pred-r2 g 0.6, but after removing the nonadditive
substituents, most of the models (82% over all test sets) have pred-
r2 g 0.6 (plot showing this case is available as Supporting
Information, Figure S10).

Training and Test Set Attributes. Following the classification
of the data sets as additive, partially additive, or nonadditive, the
next step was to determine the minimal requirements for training
and test sets in order to obtain a reliable assessment about additive
effects. Training and test set attributes may provide key guidelines
for medicinal chemists to design new libraries, not only to obtain
a SAR but also to be able make an assessment on additive effects

for those structures against the target(s) under analysis. Thus, the
determation of these attributes could have an impact on the initial
design and prioritization of compounds for synthesis and on the
definition of the best strategy (sequential or combinatorial) for
further iterations of the drug discovery process.

The attributes of the five test sets selected for each data set are
summarized as follows (Table 2): (i) test set size, between 11%
and 23% of the complete data set; (ii) range of activity values,
between 31% and 100% of the range covered by data set; and (iii)
the distribution of substituents within the R-groups (as measured
by the SSE) is very high, larger than 0.95 in most cases; this is
mainly due to the constraint that each test set should contain at
least one occurrence of each Rx and Ry substituent. A large number
of training sets, between 47 and 202, was generated for each test
set (Table 3). Thus, a more detailed analyses of training set attributes
was performed compared to test set attributes, however, the
conclusions for desirable training attributes are based on a consensus
response across all test sets, therefore, we suggest that any
combination of the test set attributes used is valid. The attributes
of the training sets that were investigated are: the range of activity
values of the compounds in the training set, training set size, and
the distribution of substituents within the R-groups (as measured
by the SSE).

Activity Range. Figure 7 shows the variation of pred-r2 with
the range of activity values in the training sets for the additive data
set, D1_1_64. The pred-r2 values are all relatively high and show
no correlation with the range of activity values covered. Similar
plots are seen for all other data sets, regardless of their classification
as additive, nonadditive, or partially additive. Thus we conclude
that activity range does not appear to be a factor in the ability to
generate good predictive models.

Training Set Size. Figure 8a shows pred-r2 plotted against
training set size for the additive data set, D1 1_64. Training set
size is measured as the percentage of compounds in the complete
combinatorial data set, and it should be noted that training sets
containing 100% of the compounds were not possible due to the
use of a test set. It can be seen that successful models (pred-r2 g
0.6) are still generated when only 30% of the complete data set is
used. The corresponding plot for a nonadditive data set ((4R 1_56)
is shown in Figure 8b, where all models have poor predictive
performance (pred-r2 < 0.5) regardless of training set size. The
two plots are characteristic of data sets in the same additivity
classification.

The relationship between pred-r2 and training set size was
investigated further by comparing the average pred-r2 for training
sets containing <30% of the compounds (for a small number of
cases where training sets with <30% did not exist, the minimum
size was increased to 40% or 50%) with the average pred-r2 for
the remaining training sets, that is, those containing >30% of
compounds. The maximum difference between the average pred-
r2 of the large and small training sets is 0.163 over all data sets
(the average difference is 0.07), indicating that there is very little
difference between the best models of the large and small training
sets. Pred-r2 values for the small training sets (<30% of the
compounds in the data set) have also been extracted from Figure
5a and are shown in Figure 9, where the clear distinction between
the additive (red), partially additive (green), and nonadditive (blue)
data sets is still apparent. The data sets are colored according to
the classification reported in Table 4.

Distribution of Substituents. Figure 10 shows a typical
relationship between the distribution of substituents in the RX

(x-axis, XSSE) and RY groups (y-axis, YSSE) and model
performance (color coding is used to indicate pred-r2, with red
representing pred-r2 of 1 through to blue for pred-r2 of 0) for
an additive data set. The first five plots represent different test
sets, and the final (bottom right) plot shows the same training
sets as the bottom left but with the color coding used to represent
training set size rather than pred-r2. Although pred-r2 increases
as the SSE of the training set increases, the final plot indicates
that this can be attributed to the increase in the number of
compounds in the training set as the SSE tends toward one.

Figure 11. (a) Substituent profile for three end points for the Rx group
of data set D2. Each substituent is plotted along the x-axis and the
average ranks of the substituents are plotted on the y-axis. (b)
Substituent profile for three end points for the Ry group of data set D2.
Each substituent is plotted along the x-axis, and the average ranks of
the substituents are plotted on the y-axis.

Table 5. Selected Compounds and Their Properties for Data Set D2

Rx group Ry group 1_62 1_64 58_7

X1 Y1 6.74 8.06 5.64
X1 Y2 6.68 8.94 5.98
X1 Y6 6.76 8.61 5.01
X1 Y7 6.96 7.69 6.06
X1 Y9 6.81 7.77 5.77
X1 Y8 6.79 8.06 5.59
X1 Y10 7.77 8.84 5.10
X1 Y11 6.85 8.55 5.17
X1 Y12 6.81 7.78 5.23
X7 Y2 6.88 8.42 7.91
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Similar plots were obtained for the small (<30% of the full data
set) training sets extracted from the same data set, where it can
be seen that the relationship between pred-r2 and the distribution
of the substituents in the training set has been lost (the plot
showing this case is available as Supporting Information, Figure
S11). Thus, we conclude that the distribution of substituents
within the training set has little effect on the predictive ability
of a model.

Substituent Profiling: Impact on Lead Optimization. For a
data set that exhibits additive behavior over several different
assays or end points, an analysis of the substituent coefficients
for the different assays can provide valuable information. For
example, substituents that make a positive contribution to
multiple assays can be distinguished from those that confer
selectivity by making a positive contribution to one end point
and a negative contribution to another. Such an analysis assumes
that the substituents are stable across the multiple models and
is therefore only applicable to additive data sets. A substituent
profile is constructed by first ranking the coefficients in each
model with the substituent with maximum coefficient at rank
one; the substituent ranks are then averaged over all models for
the data set. A graphical representation of a substituent profile
can be used as a visualization tool to enable qualitative decision-
making and allows medicinal chemists to discuss and rationalize
the SAR in a multifactorial manner, which, therefore, helps to
inform future directions in lead optimization.

Among the data sets analyzed and classified according to the
additive/nonadditive effects in the SAR, data set D2 is highlighted
because it shows additive effects for three different targets, class
A GPCRs: 1_62, 1_64, and 58_7. Therefore, we can use substituent
profiling to identify and rationalize the impact of the different
substituents in a multifactorial optimization and look for those
combinations of substituents with the desired activity and selectivity.
Substituent profiles for data set D2 are shown in Figure 11a,b and
indicate that compounds containing substituent X1 (which represents
p-methoxy phenyl) should have higher activity for targets 1_62 and
1_64 compared to 58_7. This is supported by the activity values
of the compounds that contain this substituent, which are shown
in Table 5. The profiles also indicate that a combination of X7 and
Y2 should correspond to high activity for 58_7, low activity for
1_62, and intermediate activity for 1_64. This compound does
indeed have low activity for 1_62 and high activity for 58_7;
however, it has higher activity for 1_64 than anticipated. This could
be because the X7 group, for which all data sets have a similar
ranking, has more influence on activity than the Y2 group.

This visualization tool allows the relative substituent coefficients
across multiple biological end points to be superimposed, as
demonstrated here, and provides easy-to-interpret clues on the
importance of individual substituents in a multifactorial optimiza-
tion, whether the aim is to maximize the contribution to activity
for all the end points or to optimize on selectivity. In addition to
this qualitative analysis, the FW models also provide quantitative
estimates of substituent contributions, which can be used to make
more accurate predictions, for example, between substituents that
may have identical rankings but different weights in the QSAR
models such as X7 and Y2 described above. The combination of
qualitative and quantitative analyses can be used to prioritize
compounds for the next iteration in the synthesize-test cycle, based
on their multifactorial profiles.

Conclusions

FW analysis was carried out for eight near-complete com-
binatorial libraries assayed on a total of 19 biological responses,
and pred-r2 and LOO q2 were calculated in an attempt to classify
the libraries as additive, partially additive, and nonadditive.
While pred-r2 provided a clear distinction between the data sets,
enabling a classification to be made, no clear distinction was
seen using q2: with data sets identified as additive using pred-
r2 (g0.6) having low q2 and, conversely, data sets identified as
nonadditive exhibiting high q2 values. In addition, substituent

stability analyses confirmed the additivity classifications made
using the pred-r2 criterion. Thus, we conclude that pred-r2

appears to be a good indicator of additivity effects in FW
analysis, whereas q2 using LOO cross-validation is less reliable.
This finding is consistent with previous studies that have
questioned the reliability of LOO q2.49 Furthermore, and perhaps
unsurprisingly, we found that r2 did not provide a reliable
indicator of additive effects. Only half of the data sets (10 out
of 19 in Table 4) examined showed clear additive behavior for
their biological responses, which leads us to question the concept
of additivity that is widely taken for granted in many approaches
to drug discovery process. The assumption of additive effects,
when the biological response is dependent on interaction
between the substituents, could lead to nonproductive directions
being pursued in an iterative lead-optimization process. For an
additive data set, a sequential approach to synthesizing new
compounds can be followed based on estimated R-group
contributions calculated during FW analysis; conversely, a
combinatorial approach should be followed for data sets that
show nonadditive behavior, and in this scenario, a FW analysis
is not valid. We have also seen that the relationship between
chemistry space and biological space is complex, as might be
expected. Thus, a library may exhibit additive behavior for one
biological response and nonadditive behavior for a different
response, and different libraries may demonstrate different
additivity behavior when assayed on the same biological target.

We then carried out a retrospective analysis of the additive
data sets in which compounds were progressively removed from
the training sets in order to determine the minimum requirements
for assessing additivity. The aim was to determine guidelines
for assessing additivity that could be used prospectively in a
lead optimization project and, as consequence, for the design
of libraries of compounds to be synthesized. If the presence of
additive effects can be established by analyzing a small fraction
of a virtual library, then a sequential approach to synthesis is
justified based on the quantitative estimations of substituent
contributions. Furthermore, if additive effects are seen across
multiple properties, then a multifactorial analysis can be
followed based on substituent profiles. The combination of
qualitative visualization tools and quantitative QSAR analyses
can be used to rationalize SAR and prioritize compounds for
the next iteration in the synthesize-test cycle based on their
multifactorial profiles. If a library is assessed as being nonad-
ditive, then a combinatorial approach to synthesis should be
followed.

The retrospective analysis demonstrated that pred-r2 remained
robust as an indicator of additive effects when as few as 30%
of the compounds were present in the training set, with the
constraint that there is as least one occurrence of each substituent
present. For training sets with fewer than 30% of the full matrix,
the FW analysis began to fail even for additive data sets. No
clear relationship was found for the other training set attributes
investigated, namely property range and distribution of substit-
uents. The test sets used in the analysis contained from 11-23%
of the full-matrix, and were also constrained to contain at least
one occurrence of each substituent.

The use of pred-r2 to assess additivity is undesirable because
it requires additional compounds to be synthesized and assayed
in order to form the test set; in total, between 41-53% of the
full matrix is required considering both training and test sets.
However, our investigations so far have indicated that the use
q2 can be misleading. Future work will consider more sophis-
ticated implementations of cross-validation, for example, leave-
group-out (LGO) and constrained cross-validation in which
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similar constraints to those applied to the test sets are used to
ensure that all substituents in the leave-out sets are still
represented in the “training” set. It is hoped that such an analysis
may lead to a reduction in the number of compounds that need
to be synthesized in order to determine additivity.
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